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Abstract

The problem of a cylindrically anisotropic tube or bar was seemed to be ®rst examined by Lekhnitskii (1981)
[Lekhnitskii, S.G., 1981. Theory of Elasticity of an Anisotropic Body. (Trans. from the revised 1977 Russian
edition.) Mir, Moscow]. Recently, a thorough investigation of the subject was performed by Ting (1996) [Ting,
T.C.T., 1996. Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic

material. Proc. Roy. Soc. Lond. A452, 2397±2421] in which a formulation akin to that of Stroh's formalism is
employed to resolve the boundary value problem subjected to a uniform pressure, shearing, torsion and uniform
extension. In a continuing paper, Ting (1999) [Ting, T.C.T., 1999. New solutions to pressuring, shearing, torsion

and extension of a cylindrically anisotropic elastic circular tube or bar. Proc. Roy. Soc. Lond, to appear.] rederived
the solutions based on a modi®ed formalism of Lekhnitskii, in which the solutions are in terms of elastic
compliances, reduced elastic compliances as well as doubly reduced compliance. The results are much more compact

and simpler than those of the earlier one. Independently, in this work, we construct the governing system also under
the Lekhnitskii's framework. Nevertheless, the present work and Ting's formulation (1999) are not alike. Besides the
loads considered in Ting (1996, 1999), we add the e�ect of a uniform temperature change in the formulation. The
assumption that the stresses depend only on r makes it possible to incorporate the various loading cases considered.

In addition to the explicit forms of admissible stresses, we derive the admissible displacements which are ensured to
be single-valued for a multiply-connected domain. In contrast to the Ting's works (1996, 1999), which often require
superpositions of two or more basic solutions, the present solutions o�er complete forms of solutions ready for

direct calculations. We also report that, as in rectilinearly anisotropic solids, an entire analogy is observed between
the ®elds of a uniform axial extension and a uniform temperature change in cylindrically anisotropic solids. 7 2000
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1. Introduction

Some years ago, Ting (1996) presented a thorough investigation of a circular tube or bar of
cylindrically anisotropic material subjected to pressuring, shearing, torsion and extension (see Figs. 1
and 2). Stroh formalism is devised for cylindrically anisotropic materials, in which the ®elds are
expressed in terms of elastic moduli. The derivation assumes that the displacements only depend on the
radial distance r. Despite the fact that the formulation has the merits of simplicity and clarity, the
solutions are rather cumbersome, and in certain situations they may not be very convenient for quick
references.

Exactly the same problem was seemed to be ®rst examined by Lekhnitskii (1981), in which the same
types of loads except the shearing loadings are considered. In that study, a general framework of
generalized plane deformations (stresses do not depend on the axial direction z ) is ®rst established.
Speci®c results, which are in terms of elastic compliances, are then derived for the considered loadings
under the assumption that the characterized stress potentials F and C are only functions of r. This
assumption indeed excludes the possibility of incorporating the shearing loads in the formulation.

The present work is mainly motivated by the two previous works with the objective to o�er simple
exact solutions for applications. Besides the loading conditions considered by Ting (1996), we add the
e�ect of a uniform temperature change in the formulation. Lekhnitskii's formalism is adopted under the
condition that the stresses, instead of the stress potentials, depend only on r. This makes it possible to
incorporate the various loading cases considered. We mention that Lekhnitskii's assumption, i.e.
F � F�r�, C � C�r�, is more restricted than the present one, sss � sss�r�: Note that F�r� and C�r� always
imply the stresses are functions of r, but not conversely. In addition to the explicit forms of admissible
stresses, we derive the admissible displacements which are ensured to be single-valued for a multiply-
connected domain. In contrast to Ting's (1996) work, and a continuing paper (Ting, 1999) which often
require superpositions of two or more basic solutions, the present solutions o�er complete forms of

Fig. 1. A schematic representation of a circular tube subjected to radial traction, torsion, extension.
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solutions ready for numerical calculations. We also ®nd an interesting analogy between the ®elds of a
uniform axial extension and a uniform temperature change for a cylindrically anisotropic body. This
phenomenon was also observed in rectilinearly anisotropic solids (Chen, 1998).

Just prior to the completion of this work, Professor Ting informed the leading author that he had
rederived his earlier results (1996) based on a modi®cation of Lekhnitskii formalism. The new results
(Ting, 1999), which are written in terms of elastic compliance, reduced elastic compliances as well as the
doubly reduced elastic compliances, have much simpler forms compared with those of the earlier one
(Ting, 1996). Although the present study and Ting's (1999) work both employ modi®ed Lekhnitskii's
formalism, the formulation is not alike.

Relevant earlier results include Avery and Herakovich (1986), Chen et al. (1990), Hashin (1990) and
Christensen (1994), in which they are mainly concerned with the cylindrically orthotropic solid. To begin
with, let us ®rst brie¯y describe the constitutive relations of cylindrically anisotropic solids. Materials
with cylindrical anisotropy possess constant properties in a cylindrical coordinate system (r, f, z ),
namely properties in tangential, radial, and axial directions are di�erent from each other. They are not
uncommon in nature. For example, they appear in carbon ®ber (Dresselhaus et al., 1988) and in tree
trunks. Anisotropy of this kind is characterized by the fact that the material properties at any point
along the r direction are exactly the same; also all directions parallel to the f and z directions are
constant. The constitutive equations can be written in the form

eee � Ssss� aaaDT �1�

where S � �sij �, i, j � 1±6, are the elastic compliance which link the stresses sss and the strains eee, aaa � �ai �
are the thermal expansion coe�cients and DT is the uniform temperature change. The stresses sss and
strains eee are written on the short notations

sss � �sr, sf, sz, sfz, srz, srf �T,

eee � �er, ef, ez, 2efz, 2erz, 2erf�T: �2�

Fig. 2. A schematic representation of a circular tube subjected to in-plane and anti-plane shears.
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2. General framework

Consider a cylindrically anisotropic body of cylindrical shape in which all cross sections are of the
same geometry along the axial direction. Suppose the body is subjected to boundary conditions over the
lateral surface and at the end sections so that the stresses depend on r only, but not on f or z. For
example, a circular tube subjected to radial forces, shearing stresses, or subjected to an axial extension
or a twisting moment at its end sections is an example of this. Under the prerequisite si � si�r�,
equilibrium equations are (cf. Ting, 1999)

dsr
dr
� sr ÿ sf

r
� 0,

dsrf
dr
� 2

srf
r
� 0,

dsrz
dr
� srz

r
� 0: �3�

The latter two equations readily provide

srf �
s0rf
r2

, srz � s0rz
r
, �4�

in which s0rf, and s0rz are certain constant quantities to be determined from boundary conditions (see
also Ting, 1996).

Since the stresses depend on r, so do the strains. The compatibility conditions can be simpli®ed as

d2ez
dr2
� 0,

1

r

dez
dr
� 0,

d

dr

�
r2

def
dr

�
ÿ r

der
dr
� 0,

d

dr

�
1

r

d

dr
�refz �

�
� 0: �5�

The ®rst two equations suggest that ez must be a constant, say e0z , and the remaining ones are recast as

r
d2ef
dr2
� 2

def
dr
ÿ der

dr
� 0,

d

dr
�refz� � Wr, �6�

where W is an integration constant, but physically it corresponds to a twisting angle per unit length
along the axial direction. For later convenience, let us rearrange Eq. (1) as8>>>><>>>>:

er
ef
2efz
2erz
2erf

9>>>>=>>>>; �
266664
b11 b12 b14 b15 b16
b12 b22 b24 b25 b26
b14 b24 b44 b45 b46
b15 b25 b45 b55 b56
b16 b26 b36 b46 b66

377775
8>>>><>>>>:
sr
sf
sfz
srz
srf

9>>>>=>>>>;�
8>>>><>>>>:
s 013
s 023
s 034
s 035
s 036

9>>>>=>>>>;e
0
z �

8>>>><>>>>:
a 01
a 02
a 04
a 05
a 06

9>>>>=>>>>;DT, �7�

ÿsz � s 013sr � s 023sf � s 034sfz � s 035srz � s 036srf ÿ Eze0z � Eza3DT, �8�
where

bij � sij ÿ si3sj3
s33

, s 0i3 �
si3
s33

, a 0i � ai ÿ a3si3
s33

, i, j � 1, 2, 4, 5, 6 �9�

and Ez � 1=s33 is the axial Young's modulus.
To solve the system (3), (6), (7) and (8), we introduce the stress function F governed by

sr � 1

r

dF

dr
, sf � d2F

dr2
, �10�

so that Eq. (3a) is ful®lled and, for equidimensional purpose, let
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sfz � ÿd2C
dr2

: �11�

Upon substituting Eqs. (10) and (11) into Eq. (6), the solution ®elds are governed by

b22

�
d4F

dr4
� 2

r

d3F

dr3

�
� b11

�
ÿ 1

r2
d2F

dr2
� 1

r3
dF

dr

�
ÿ b24

d4C
dr4
� ÿb14 � 2b24

�1
r

d3C
dr3

� ÿ2
ÿ
b16 � b26

�
s0rf

r4
ÿ b15s

0
rz

r3
,ÿ b24

d3F

dr3
ÿ ÿb14 � b24

�1
r

d2F

dr2
� b44

�
d3C
dr3
� 1

r

d2C
dr2

�

� s 034e
0
z

r
ÿ b46s

0
rf

r3
ÿ 2W: �12�

The displacement ®elds can be directly integrated from Eqs. (7) and (8) in the forms (Lekhnitskii, 1981)

ur � U� �z�o2cos fÿ o1sin f� � u01cos f� u02sin f
�
,

uf � V� Wzr� �ÿ z�o2sin f� o1cos f� � o3rÿ u01sin f� u02cos f
�
,

uz �W� e0zz�
�
r�o1sin fÿ o2cos f� � u03

�
, �13�

where o1, o2, o3 are the rigid body rotations about three axes, x1, x2, x3, respectively, and u01, u
0
2, u

0
3 are

the rigid body displacements. The function U, V, W are related by

@U

@r
� b11sr � b12sf � b14sfz � b15srz � b16srf � s 013e

0
z � a 01DT, �14a�

1

r

@V

@f
� U

r
� b12sr � b22sf � b24sfz � b25srz � b26srf � s 023e

0
z � a 02DT, �14b�

1

r

@U

@f
� @V
@r
ÿ V

r
� b16sr � b26sf � b46sfz � b56srz � b66srf � s 036e

0
z � a 06DT, �14c�

@W

@r
� b15sr � b25sf � b45sfz � b55srz � b56srf � s 035e

0
z � a 05DT, �14d�

1

r

@W

@f
� b14sr � b24sf � b44sfz � b45srz � b46srf � s 034e

0
z � a 04DTÿ Wr: �14e�

3. Admissible ®elds

The system of di�erential equation (12) is equidimensional, which can be resolved by introducing a
new variable s � ln r: De®ning the di�erential operator D � d=ds, the system (12) is decoupled as

8>>>>>>>>><>>>>>>>>>:
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8>><>>:
D 2�Dÿ 1�2�Dÿ 2�

�
�Dÿ 1�2ÿk2

�
F � 12

ÿ
b14 ÿ 2b24

�
We3s=

�
b22b44 ÿ b2

24

�
,

D 2�Dÿ 1�2�Dÿ 2�
�
�Dÿ 1�2ÿk2

�
C � 6

ÿ
b11 ÿ 4b22

�
We3s=

�
b22b44 ÿ b2

24

�
:

�15�

The characteristic values of the systems are: 2, 1ÿ k, 1� k together with two double roots 1 and 0,
where

k �
��������������������������
b44b11 ÿ b2

14

b44b22 ÿ b2
24

s
�16�

Note that the numerator and denominator of Eq. (16) are principal minors of elastic compliance and
thus their values are always positive. For all transversely isotropic and isotropic solids, b11 � b22,
b14 � b24 � 0, it follows that k � 1: Of course, there are certain anisotropic materials, although unlikely
occurs in practice, that k � 1: Naturally, depending on the values of k, the detailed solutions will take
di�erent forms. We summarize in the following cases.

3.1. Anisotropic materials with k6�1 or k 6�2

For conciseness of the formulae we de®ne the following short notations

Z1 �
ÿb44

ÿ
b16 � b26

�� b46
ÿ
b14 � b24

�
b11b44 ÿ b2

14 ÿ
�
b22b44 ÿ b2

24

� , Z2 �
ÿb46

ÿ
b11 ÿ b22

�� ÿb16 � b26
�ÿ
b14 ÿ b24

�
b11b44 ÿ b2

14 ÿ
�
b22b44 ÿ b2

24

�

m1 �
2b24 ÿ b14

b11b44 ÿ b2
14 ÿ 4

�
b22b44 ÿ b2

24

� , m2 �
4b22 ÿ b11

b11b44 ÿ b2
14 ÿ 4

�
b22b44 ÿ b2

24

�

r1 �
b14b45 ÿ b15b44
b11b44 ÿ b2

14

, r2 �
b11b45 ÿ b15b14
b11b44 ÿ b2

14

,

xe �
s 034
ÿ
b14 ÿ b24

�ÿ b44
ÿ
s 013 ÿ s 023

�
b11b44 ÿ b2

14 ÿ
�
b22b44 ÿ b2

24

� , xt �
a 04
ÿ
b14 ÿ b24

�ÿ b44
ÿ
a 01 ÿ a 02

�
b11b44 ÿ b2

14 ÿ
�
b22b44 ÿ b2

24

� , �17�

and

g1 � b14 � b24
b44

, gÿ1 � b14 ÿ b24
b44

, gk � b14 � kb24
b44

, gÿk � b14 ÿ kb24
b44

�18�

Back to the solutions of Eq. (15), the stress functions F and C need to be resolved ®rst. The
corresponding stress ®elds sr, sf and sfz are found from Eqs. (10) and (11) as

sr � Z1s
0
rf=r

2 � c3=r� 2c5 � �1ÿ k�c6rÿkÿ1 � �1� k�c7rkÿ1 � Wm1r,

sf � ÿZ1s0rf=r2 � 2c5 ÿ k�1ÿ k�c6rÿkÿ1 � k�k� 1�c7rkÿ1 � 2Wm1r,
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sfz � ÿZ2s0rf=r2 ÿ
ÿ
b11c3 � b15s

0
rz

�
=
ÿ
b14r

�ÿ �2g1c5 � s 034=b44e
0
z � a 04=b44DT

�ÿ �1
ÿ k�gÿkc6rÿkÿ1 ÿ �1� k�gkc7rkÿ1 � Wm2r, �19�

together with the shearing stresses (4) and axial stress (8), where ci being some constants to be
determined. However, in certain geometric con®gurations the boundary conditions together with the end
conditions alone are not su�cient for the determination of all the unknown coe�cients (Timoshenko
and Goodier, 1970). In particular, for a complete ring additional investigations are necessary to ensure
the displacements are single-valued. To do this, by integration of Eq. (14a), we obtain

U �
��

b11sr � b12sf � b14sfz � b15srz � b16srf � s 013e
0
z � a 01DT

�
dr� p�f� � p0, �20�

in which p�f� is a periodic function of f with a period 2p, and p0 is a constant. From Eqs. (20) and
(14b), we ®nd

@V

@f
�
hÿ
b12b14 ÿ b11b24

�
=b14c3 ÿ

ÿ
b15b24 ÿ b14b15

�
=b14s

0
rz ÿ p0

i
�
n�
s 023 ÿ s 013 � s 034

ÿ
b14

ÿ b24
�
=b44

�
e0z � 2

�
b22 ÿ b11 � g1

ÿ
b14 ÿ b24

��� c5
�
a 02 ÿ a 01 � a 04

ÿ
b14 ÿ b24

�
=b44

�
DT

o
r

� �ÿb22 ÿ b11
�
Z1 �

ÿ
b14 � b24

�
Z2 � b26

�
s0rf=r�

�ÿ
4b22 ÿ b11

�
m1 �

ÿ
2b24 ÿ b14

�
m2
�
Wr2=2

� 1ÿ k

k

�
b11 ÿ b22k

2 ÿ gÿk
ÿ
b14 � b24k

2
��
c6r
ÿk

ÿ 1� k

k

�
b11 ÿ b22k

2 ÿ gk
ÿ
b14 ÿ b24k

2
��
c7r

k ÿ p�f�:

�21�

Surprisingly after some derivations it can be shown that the coe�cients of the terms rÿ1, r2, rk, rÿk turn
out to be zero identically. For V to be single-valued, it is necessary that @V=@f must at most be a
periodic function of f with period 2p: Thus the coe�cients of the r and constant terms should be set
zero. This providesÿ

b12b14 ÿ b11b24
�
=b14c3 ÿ

ÿ
b15b24 ÿ b14b15

�
=b14s

0
rz ÿ p0 � 0, �22a�

c5 � xee0z � xtDT
2

: �22b�

Next from Eq. (14e), by direct expansions, we obtain

@W

@f
�
h�

b2
14 ÿ b11b44

�
c3 ÿ

ÿ
b15b44 ÿ b14b45

�
s0rz
i
=b14 �

�ÿ
b14 ÿ b24

�
Z1 � b44Z2 � b46

�
s0rf=r

� 2
ÿ
b14 � b24 ÿ b44g1

�
c5r�

�ÿ
b14 � 2b24

�
m1 � b44m2 ÿ 1

�
Wr2 � �1ÿ k�ÿb14 ÿ b24k

ÿ b44gÿk
�
c6r
ÿk � �1� k�ÿb14 � b24kÿ b44gk

�
c7r

k: �23�

Again, interestingly, after expansion and use of Eqs. (17) and (18), the coe�cients of the terms rÿ1, r,
r2, rÿk and rk can be shown to be zero. To ensure the single-valuedness of the displacement the constant
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term must be set zero, which leads to c3 � r1s
0
rz: This together with Eq. (22b) will provide p0 in terms of

s0rz:
To ®nd the displacements V and W, we make use of the relations (14c) and (14d). First, integration of

Eq. (21) will give

V � ÿ
�
p�f� df� ~V�r�, �24�

~V�r� being a function of r only. Substituting Eqs. (24) and (20) into Eq. (14c), we ®nd

dp�f�
df
�
�
p�f� df � 0, �25a�

,

r
dV�r�

dr
ÿ ~V�r� � r

�
b16sr � b26sf � b46sfz � b56srz � b66srf � s 036e

0
z � a 06DT

�
�25b�

from which p�f� � a cos f� b sin f and the homogeneous solution of ~V�r� is ~ar, both of which can be
incorporated into rigid body motions. By expansion, the nonhomogeneous term (right-hand side) of Eq.
(25b) ishÿ

b14b16 ÿ b11b46
�
c3 ÿ

ÿ
b15b46 ÿ b14b56

�
s0rz
i
=b14 �

�ÿ
b16 ÿ b26

�
Z1 � b46Z2 � b66

�
s0rf=r�

hÿ
b16

� b26 ÿ b46g1
�
xe �

ÿ
s 036 ÿ b46s

0
34=b44

�i
re0z �

hÿ
b16 � b26 ÿ b46g1

�
xt �

ÿ
a 06 ÿ b46a

0
4=b44

�i
rDT

� �ÿb16 � 2b26
�
m1 � b46m2

�
Wr2 � �1ÿ k�ÿb16 ÿ b26kÿ b46gÿk

�
c6r
ÿk � �1� k�ÿb16 � b26k

ÿ b46gk
�
c7r

k: �26�

Thus, the displacement V is exactly the particular solution ~Vp�r� of Eq. (25b), which can be easily solved
by the method of undetermined coe�cients. Lastly, the displacement W is found via integration of Eq.
(14d).

In summary, the ®nal forms of admissible stress ®elds are expressed by

sr � Z1s
0
rf=r

2 � r1s
0
rz=r� xee

0
z � xtDT� �1ÿ k�c6rÿkÿ1 � �1� k�c7rkÿ1 � Wm1r,

sf � ÿZ1s0rf=r2 � xee
0
z � xtDTÿ k�1ÿ k�c6rÿkÿ1 � k�k� 1�c7rkÿ1 � 2Wm1r,

sfz � ÿZ2s0rf=r2 ÿ r2s
0
rz=rÿ

ÿ
xeg1 � s 034=b44

�
e0z ÿ

ÿ
xtg1 � a 04=b44

�
DTÿ �1ÿ k�gÿkc6rÿkÿ1

ÿ �1� k�gkc7rkÿ1 � Wm2r,
�27�

together with in-plane stress srf and anti-plane stress srz given in Eq. (4) and axial stress in Eq. (8),
where the coe�cients c6, c7, s0rf, s0rz, e0z and W are unknown constants to be determined from the
boundary conditions on the lateral surfaces and at the end sections.

The admissible displacement ®elds are
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U � k1s0rz ÿ
�ÿ
b11 ÿ b12

�
Z1 � b14Z2 � b16

�
s0rf=r�

�ÿ
b11 � 2b12

�
m1 � b14m2

�
Wr2=2�

hÿ
b11 � b12

ÿ b14g1
�
xe �

ÿ
s 013 ÿ b14s

0
34=b44

�i
re0z �

hÿ
b11 � b12 ÿ b14g1

�
xt �

ÿ
a 01 ÿ b14a

0
3=b44

�i
rDT

ÿ 1ÿ k

k

ÿ
b11 ÿ b12kÿ b14gÿk

�
c6r
ÿk � 1� k

k

ÿ
b11 � b12kÿ b14gk

�
c7r

k, �28�

V � ÿk2s0rz ÿ
1

2

�ÿ
b16 ÿ b26

�
Z1 � b46Z2 � b66

�
s0rf=r�

�ÿ
b16 � 2b26

�
m1 � b46m2

�
Wr2 �

hÿ
b16 � b26

ÿ b46g1
�
xe �

ÿ
s 036 ÿ b46s

0
34=b44

�i
re0z �

hÿ
b16 � b26 ÿ b46g1

�
xt �

ÿ
a 06 ÿ b46a

0
4=b44

�i
rDT

ÿ 1ÿ k

1� k

ÿ
b16 ÿ b26kÿ b46gÿk

�
c6r
ÿk ÿ 1� k

1ÿ k

ÿ
b16 � b26kÿ b46gk

�
c7r

k, �29�

W � k3s0rzln rÿ �ÿb15 ÿ b25
�
Z1 � b45Z2 � b56

�
s0rf=r�

�ÿ
b15 � 2b25

�
m1 � b45m2

�
Wr2=2

�
hÿ
b15 � b25 ÿ b45g1

�
xe �

ÿ
s 035 ÿ b45s

0
34=b44

�i
re0z �

hÿ
b15 � b25 ÿ b45g1

�
xt

� ÿa 05 ÿ b45a
0
4=b44

�i
rDTÿ 1ÿ k

k

ÿ
b15 ÿ b25kÿ b45gÿk

�
c6r
ÿk

� 1� k

k

ÿ
b15 � b25kÿ b45gk

�
c7r

k,

�30�

where

k1 �
�
b14b12
b11

ÿ b24

�
b14b15 ÿ b11b45
b2
14 ÿ b11b44

�
�
b25 ÿ

b15b12
b11

�
,

k2 �
�
b14b16
b11

ÿ b46

�
b14b15 ÿ b11b45
b2
14 ÿ b11b44

�
�
b56 ÿ

b15b16
b11

�
,

k3 �
�
b14b15
b11

ÿ b45

�
b14b15 ÿ b11b45
b2
14 ÿ b11b44

�
 
b55 ÿ

b2
15

b11

!
: �31�

3.2. Anisotropic materials with k � 2

From the positive de®niteness of the elastic compliance it is seen that the value of k (Eq. (16)) may
take any positive quantity. For materials with k = 2, the non-homogeneous term of Eq. (15) coincides
with one of the homogeneous solutions, and thus, in contrast to those in Section 3.1, the particular
solutions (15) need to be carefully modi®ed. However, in practical situations it would appear unlikely
that such coincidence, k = 2, would occur, since all material coe�cients are measured quantities.
Detailed solutions of this kind are of little practical use. For brevity only the stress potentials are solved:
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F � c1 � Z1s
0
rfln r� c3r� c5r

2 � c6=r� c7r
3 � l1Wr3ln r,

C � c 01 � Z2s
0
rfln r� ÿb11c3 � b15s

0
rz

�
=b14rln rÿ 1

2
gÿ2c6=r� 1

2
g2lWr3ln r�

�
g1c5 � 1

2b44

ÿ
s 034e

0
z

� a 04DT
��
r2 ÿ

�
2� 3b14l
12b44

Wÿ 1

2
g2c7

�
r3, �32�

where

l � 2b24 ÿ b14

3
�
b2
14 ÿ b11b44

� : �33�

Again, the stress ®elds are derived from (10), (11) and (4), and the displacements can be integrated from
the elastic strains taking into account of global compatibility to ensure the single-valuedness around
each contour of a multiply-connected domain.

3.3. Anisotropic materials with k = 1

As remarked earlier, a transversely isotropic solid and its higher symmetric classes correspond to k =
1. In addition to these, theoretically there are situations that k equals to 1, namely b44b11ÿb2

14�b44b22ÿ
b2
24, but the material is fully anisotropic. In this particular coincidence, `0' is a characteristic root of

multiple three, and `1' and `2' are roots of multiple two, and the solutions for the potentials need to be
revised. As the same reasoning for k = 2, there are very few occasions that this coincidence would
occur. Only solutions of the potentials are recorded here:

F � c1 � c2ln r� c3r� c5r
2 � c6ln

2r� c7r
2ln r� m1Wr

3=3,

C � c 01 �
h
gÿ1c2 �

�
2b14c6 � b46s

0
rf

�
=b44

i
ln r� b11c3 � b15s

0
rz

b14
rln rÿ 1

6
m2r

3W� c 03r�
�
g1c5

ÿ b14
b44

c7 � 1

2b44

ÿ
s 034e

0
z � a 04

�
DT

�
r2 ÿ gÿ1c6ln2r� g1c7r

2ln r, �34�

where ci are constants to be determined from boundary conditions.

3.4. Monoclinic and orthotropic materials

Suppose that the material is monoclinic, namely possessing a re¯ectional symmetry at z = 0. It is
known that (Nye, 1957)

b14 � b24 � b15 � b25 � b46 � b56 � 0,

s 034 � s 035 � a 04 � a 05 � 0: �35�
In this case the governing equations for the potentials F and C in Eq. (12) will become totally
independent
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b22

�
d4F

dr4
� 2

r

d3F

dr3

�
� b11

�
ÿ 1

r2
d2F

dr2
� 1

r3
dF

dr

�
� ÿ2ÿb16 � b26

�
s0rf=r

4,

b44

�
d3C
dr3
� 1

r

d2C
dr2

�
� ÿ2W: �36�

This implies that the stresses sr, sf, and s0rf have no linkage with s0zf: Again to ensure the displacement
single-valued for a multiply-connected domain, one needs to integrate the displacements (14) properly.
In summary, the admissible ®elds of the stresses and displacements are8>>>><>>>>:

sr �
ÿ
xee0z � xtDT

�� �1ÿ k�c1rÿkÿ1 � �1� k�c2rkÿ1 ÿ b16 � b26
b11 ÿ b22

s0rf
r2

,

sf �
ÿ
xee0z � xtDT

�ÿ k�1ÿ k�c1rÿkÿ1 � k�1� k�c2rkÿ1 � b16 � b26
b11 ÿ b22

s0rf
r2

,

�37�

sfz � ÿb45b44

s0rz
r
� Wr

b44
, �38�

U �
hÿ
b11 � b12

�ÿ
xee

0
z � xtDT

�� s 013e
0
z � a 01DT

i
r� 1ÿ k

k

ÿ
b12kÿ b11

�
c1r
ÿk � 1� k

k

ÿ
b12k� b11

�
c2r

k

�
�ÿ
b11 ÿ b12

�b11 � b26
b11 ÿ b22

ÿ b16

�
s0rf=r,

V �
hÿ
b16 � b26

�ÿ
xee

0
z � xtDT

�� s 036e
0
z � a 06DT

i
rln rÿ 1ÿ k

1� k

ÿ
b16 ÿ b26k

�
c1r
ÿk ÿ 1� k

1ÿ k

ÿ
b26k

� b16
�
c2r

k ÿ 1

2

"
b2
16 ÿ b2

26

b11 ÿ b22
� b66

#
s0rf=r,

W �
 
b55 ÿ

b2
45

b44

!
s0rzln r� b45

2b44
Wr2, �39�

where the quantities xt, xe and xt follow the reduced forms

k �
���������������
b11=b22

p
, xe �

s 013 ÿ s 023
b22 ÿ b11

, xt �
a 01 ÿ a 02
b22 ÿ b11

: �40�

If the material possesses further re¯ectional symmetries with respect to the rÿ z plane and fÿ z plane,
the material is orthotropic. In this situation, in addition to Eq. (35), the coe�cients follow

b16 � b26 � b45 � s 036 � a 06 � 0: �41�
The admissible ®elds readily follow the reduced forms of Eqs. (37) and (39) as

sr �
ÿ
xee

0
z � xtDT

�� �1ÿ k�c1rÿkÿ1 � �1� k�c2rkÿ1,
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sf �
ÿ
xee

0
z � xtDT

�
ÿ k�1ÿ k�c1rÿkÿ1 � k�1� k�c2rkÿ1,

sfz � Wr
b44

, srf �
s0rf
r2

, srz � s0rz
r
; �42�

U �
hÿ
b11 � b12

�ÿ
xee

0
z � xtDT

�� s 013e
0
z � a 01DT

i
r

�1ÿ k

k

ÿ
b12kÿ b11

�
c1r
ÿk � 1� k

k

ÿ
b12k� b11

�
c2r

k,

V � ÿ1
2
b66s

0
rf=r,

W � b55s
0
rzln r: �43�

Equivalent but not formally identical results, which are in terms of sti�ness, were given by, see for
example, Chen et al. (1990), Hashin (1990) and Christensen (1994).

3.5. Transversely isotropic materials

When the material possesses further symmetry such that the transverse plane becomes isotropic, there
will be no distinction between cylindrical anisotropy and rectilinear anisotropy. All previous results will
reduce to classical results in the literature. In transversely isotropic solids, besides Eqs. (35) and (41), the
coe�cients are connected by

b11 � b22, b44 � b55, b66 � 2
ÿ
b11 ÿ b12

�
, s 013 � s 023, a 01 � a 02, �44�

so that k in Eq. (16) is identically equal to one. The admissible ®elds reduce to the known results (cf.
Timoshenko and Goodier, 1970)

sr � 2c1 � c2
r2
, sf � 2c1 ÿ c2

r2
, sfz � Wr

b44
, �45�

U � ÿb12 ÿ b11
�
c2=r�

h
2
ÿ
b11 � b12

�
c1 � s 013e

0
z � a 01DT

i
r,

V � ÿ1
2
b66s

0
rf=r,

W � b55s
0
rzln r: �46�

Again, the constants c1, c2, e0z , s
0
rf, s

0
rz and W will determined from boundary conditions.
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4. Circular tube subjected to various loadings

Consider a circular tube of cylindrical anisotropy with inner radius a and outer radius b. Suppose the
tube is su�ciently long in the axial direction. We examine the ®eld solutions of the tube subjected to
various loadings. Speci®cally, these include a radial traction, an in-plane shearing stress, and an anti-
plane shearing stress on the lateral surfaces together with an axial load P and a twisting moment T
applied at the end sections. The latter conditions are equivalent to� 2p

0

�b
a

szr dr df � P, �47a�

� 2p

0

�b
a

sfzr2 dr df � T: �47b�

Alternatively, the latter conditions may be replaced, respectively, by prescribing a constant axial strain
e0z and a twisting angle W (per unit length along the tube).

4.1. Circular tube subjected to radial traction

Consider a circular tube subjected to radial stresses si and so, at the inner and outer surfaces,
respectively. The boundary conditions are

sr � si, srf � srz � 0, at r � a,

sr � so, srf � srz � 0, at r � b, �48�
on the lateral surfaces, and P � T � 0 at the end sections.

We ®rst consider that the tube is made of a cylindrically anisotropic material in which k 6�1 and k 6�2:
Upon substituting Eqs. (27) and (4) into Eq. (48) readily provides s0rf � 0, s0rz � 0, and

si � xee
0
z � xtDT� �1ÿ k�c1aÿkÿ1 � �1� k�c2akÿ1 � Wm1a, �49a�

so � xee
0
z � xtDT� �1ÿ k�c1bÿkÿ1 � �1� k�c2bkÿ1 � Wm1b, �49b�

P � 0 � 2p
s33

�b
a

h
e0z ÿ

ÿ
a13sr � a23sf � a34sfz � a3DT

�i
r dr, �49c�

T � 0 �ÿ2p
�b
a

nÿ
xeg1 � s 034=b44

�
e0z �

ÿ
xtg1 � a 04=b44

�
DT� �1ÿ k�gÿkc1rÿkÿ1 � �1� k�gkc2rkÿ1

ÿ Wm2r
o
r2 dr:

�49d�

which will su�ce to determine the four unknown constants c1, c2, e0z and W:
On the other hand, if the end conditions are the prescribed quantities e0z and W instead of P � T � 0

at the ends, then only two knowns, c1, c2, need to be determined. In this case, the right-hand-side of
Eqs. (49c) and (49d) are the induced axial force (reaction force) and the twisting moment at the end
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sections which could be actually evaluated. In any event, the nonvanishing stress components are sr, sf,
sz, sfz

Suppose the material possesses at least a symmetry plane at z = 0, i.e. monoclinic symmetry, sfz will
be independent from sr and sf: In this situation, the system (49) is changed to

si � xee
0
z � xtDT� �1ÿ k�c1aÿkÿ1 � �1� k�c2akÿ1, �50a�

so � xee
0
z � xtDT� �1ÿ k�c1bÿkÿ1 � �1� k�c2bkÿ1, �50b�

P � 0 � 2p
s33

�b
a

h
e0z ÿ

ÿ
a13sr � a23sf � a3DT

�i
r dr: �50c�

This allows one to determine the unknown coe�cients c1, c2 and e0z : Again, if the end force condition is
replaced with a given axial strain e0z , Eqs. (50a) and (50b) are su�cient for determining the unknowns
c1, c2, while Eq. (50c) is the induced axial equivalent force. The nonvanishing stresses in materials of this
kind are sr, sf and sz:

4.2. Circular tube subjected to in-plane shear

Consider that the tube is subjected to in-plane shear at the inner and outer surfaces. The boundary
conditions is written as

srf � t
a2

, sr � srz � 0, at r � a,

srf � t
b2

, sr � srz � 0, at r � b, �51�

together with forces free conditions at the ends. This readily provides s0rf � t, s0rz � 0 and the set of
equations

si � Z1t=a
2 � xee

0
z � xtDT� �1ÿ k�c1aÿkÿ1 � �1� k�c2akÿ1 � Wm1a, �52a�

so � Z1t=b
2 � xee

0
z � xtDT� �1ÿ k�c1bÿkÿ1 � �1� k�c2bkÿ1 � Wm1b, �52b�

P � 0 � 2p
s33

�b
a

h
e0z ÿ

ÿ
a13sr � a23sf � a34sfz � a36srf � a3DT

�i
r dr, �52c�

T � 0 � ÿ2p
�b
a
f
ÿ
xeg1 � s 034=b44

�
e0z �

ÿ
xtg1 � a 04=b44

�
DT

� �1ÿ k�gÿkc1rÿkÿ1 � �1� k�gkc2rkÿ1 ÿ Wm2rÿ Z2t=r
2gr2 dr:

�52d�

for determining the four unknown coe�cients c1, c2, e
0
z, W. Again, if e0z and W instead of P and T are

prescribed, Eqs. (52a) and (52b) will su�ce to determine c1, c2, while Eqs. (52c) and (52d) give the
reaction forces at the ends. Except for srz, all stresses are non-zero.
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For materials with monoclinic symmetry or its higher symmetric classes, sfz and W, which are
independent of other stress components, are identically zero in the present loading case.

4.3. Circular tube subjected to anti-plane shear

In loading of this type the boundary conditions are

srz � t
a
, sr � srf � 0, at r � a,

srz � t
b
, sr � srf � 0, at r � b: �53�

Similar to the steps in previous sections, one can construct four equations for the four unknowns to
determine the full ®elds. For general anisotropic materials, except for srf all stresses are nonzero. For
monoclinic systems, srf � sfz � 0 in the absence of an applied torque.

4.4. Torsion of the circular tube

We consider the tube is subjected to a twisting moment T or a twisting angle W per unit length of the
tube. The traction-free condition on the lateral surfaces are sr � srf � srz � 0 at r � a and b. At the
end sections, if T6�0 and P = 0, this will provide four equations to determine the unknown coe�cients
c1, c2, e0z and W: Alternatively, if at the end sections e0z � 0 and W 6�0, then there are only two unknowns
need to be determined. In either case, the nonvanishing stress components are sr, sf, sz and sfz:

If the material of the tube is monoclinic or its higher symmetric classes such as orthotropy, transverse
isotropy, remarkably, all solutions follow the same form. In particular, it turns out that sfz is the only
nonzero stress that can be exactly determined from Eq. (47b) as

W � 2b44
b4 ÿ a4

T: �54�

4.5. Uniform extension of the circular tube

When the tube is subjected to a uniform extension e0z and is otherwise traction free. The boundary
condition on the lateral surfaces are

sr � srf � srz � 0, at r � a,

sr � srf � srz � 0, at r � b, �55�
and W � 0 at the end sections. This leads to s0rf � s0rz � 0, and two conditions

xee
0
z � �1ÿ k�c1aÿkÿ1 � �1� k�c2akÿ1 � si,

xee
0
z � �1ÿ k�c1bÿkÿ1 � �1� k�c2bkÿ1 � so, �56�

for determining the two unknowns c1, c2. In general, sr, sf, sz and sfz are nonzero. Note that if P�6�0�
and T = 0 are used for the end conditions, there are four unknowns to be determined from four
conditions. When the material is monoclinic, the nonzero stresses will be sr, sf, sz:
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4.6. Uniform temperature change of the circular tube

Consider the tube is subjected to a uniform temperature change DT and is otherwise traction free. We
®rst set W � e0z � 0: Again s0rf � s0rz � 0, and the boundary conditions provide that

xtDT� �1ÿ k�c1aÿkÿ1 � �1� k�c2akÿ1 � si,

xtDT� �1ÿ k�c1bÿkÿ1 � �1� k�c2bkÿ1 � so �57�
This will provide the full stresses ®elds for the tube in which four stresses are nonzero. For monoclinic
solids, the stress sfz will also be zero. Of course, one may set P � T � 0 at the ends. This can still be
resolved without any di�culty.

An interesting analogy is observed between the loadings of a uniform axial extension and a uniform
temperature change by comparing Eqs. (56) and (57). In particular, by setting a linkage

s 013 $ a 01, s 023 $ a 02, s 034 $ a 04, s 035 $ a 05, s 036 $ a 06 �58�
the two sets of ®elds are exactly analogous. This property is also observed in rectilinearly anisotropic
solids (Chen, 1998).

5. Some remarks

A complete stress and displacement ®elds of the tube subjected to radial traction, in-plane shear and
anti-plane shear at the inner and outer surfaces are explicitly expressed. Solutions are also presented for
the loadings of a simple torsion, a uniform extension and a uniform temperature change. We have
outlined a straightforward approach to characterize the stress potentials F and C of the considered
problem. This permits one to evaluate the stress ®elds. In a few special or degenerate cases, such as
k � 1, k � 2, or for a solid possessing a higher symmetry than that of a monoclinic solid, the solutions
may require a slight modi®cation depending on the homogenous solutions and the non-homogeneous
terms of the governing system. A notable implication of the governing system occurs when the material
at least possesses a re¯ectional symmetry at z � 0: In this situation, the solutions for F and C become
independent. Admissible displacement ®elds are integrated from the strains with the requirement that the
displacements must be single-valued for a multiply-connected domain. In contrast to the works of Ting
(1996, 1999) which require superpositions of two or more basic solutions, the present solutions o�er
complete solutions ready for direct calculations. To check the correctness of the present results, we have
made some numerical comparisons with Ting (1996)'s results which were derived based on elastic
sti�ness. Except for sr term in the torsion loading and the displacement in the uniform extension, all
numerical results agree well. Both disagreements are probably due to some typographical errors of the
formulae. It may also seem plausible that the present solutions can be applicable to a circular solid bar.
This issue has been extensively discussed in Ting (1996, 1999) works. We simply remark that at the
center of a circular solid bar, the material should not have anisotropic e�ect, as there is no distinction
between radial and circumferential directions. A discussion of this controversial issue will be reported
elsewhere.
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